Slow convergence of graphs under mean curvature flow

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean curvature flow of spacelike graphs

We prove the mean curvature flow of a spacelike graph in (Σ1 ×Σ2,g1 −g2) of a map f : Σ1 → Σ2 from a closed Riemannian manifold (Σ1,g1) with Ricci1 > 0 to a complete Riemannian manifold (Σ2,g2) with bounded curvature tensor and derivatives, and with K2 ≤ K1, remains a spacelike graph, exists for all time, and converges to a slice at infinity. We also show, with no need of the assumption K2 ≤ K1...

متن کامل

Neck Pinching Dynamics Under Mean Curvature Flow

In this paper we study motion of surfaces of revolution under the mean curvature flow. For an open set of initial conditions close to cylindrical surfaces we show that the solution forms a “neck” which pinches in a finite time at a single point. We also obtain a detailed description of the neck pinching process.

متن کامل

Mean Curvature Blowup in Mean Curvature Flow

In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.

متن کامل

Long time behavior of Riemannian mean curvature flow of graphs

In this paper we consider long time behavior of a mean curvature flow of nonparametric surface in Rn, with respect to a conformal Riemannian metric. We impose zero boundary value, and we prove that the solution tends to 0 exponentially fast as t → ∞. Its normalization u/supu tends to the first eigenfunction of the associated linearized problem.  2002 Elsevier Science (USA). All rights reserved.

متن کامل

Sharp Estimates for Mean Curvature Flow of Graphs

A one-parameter family of smooth hypersurfaces {Mt} ⊂ R flows by mean curvature if zt = H(z) = ∆Mtz , (0.1) where z are coordinates on R and H = −Hn is the mean curvature vector. In this note, we prove sharp gradient and area estimates for graphs flowing by mean curvature. Thus, each Mt is assumed to be the graph of a function u(·, t). So, if z = (x, y) with x ∈ R, then Mt is given by y = u(x, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Analysis and Geometry

سال: 2010

ISSN: 1019-8385,1944-9992

DOI: 10.4310/cag.2010.v18.n5.a5